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SUMMARY

Background: Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system,
where cognitive impairment can occur even without physical disability. The underlying mechanisms remain poorly understood. This
study investigates the role of white matter lesion load (WMLL) in sustained cognitive decline (SCD) in a real-life MS cohort, using
an artificial intelligence(Al)-based brain imaging approach.

Methods: Patients from the CHU Helora MS database with >3 SDMT assessments and serial brain MRIs were included. SCD
was defined as a >4-point or >10% SDMT drop, confirmed >6 months later. Patients were stratified into two groups: those with SCD
(COG) and those without (N-COG). WMLL was measured using a Al-based model that provides segmentation masks. Lesion volume
was calculated by multiplying segmented voxels by voxel size.

Results: Of 109 eligible patients, 43 met inclusion criteria. Seven showed SCD; 36 did not. Imaging data were available for 5
COG and 21 N-COG patients. There was no significant difference in WMLL or its progression between patients with and without
SCD. Fewer than half of the patients in the COG group showed an increase in WMLL over time, and those who did were older than
the group average. WMLL changes were not a reliable marker of SCD. Consistent with previous findings, the COG group included
more males, and disease control appeared more challenging. Vascular pathology may be misclassified by segmentation algorithms,
which partially explain why the two patients with WMLL progression were older. Gray matter was not assessed, though it may play a
key role in this phenomenon.

Conclusion: SCD did not consistently correlate with WMLL progression. Affected patients were predominantly male, consistent
with a more aggressive disease course. WMLL may also be influenced by age-related factors. Alternative imaging biomarkers are
needed to explain SCD in MS.
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Abbreviations: Al: Artificial intelligence; ANTSs: Advanced Normalization Tools; BICAMS: Brief International Cognitive
Assessment for Multiple Sclerosis; CNS: Central Nervous System; COG: Patients exhibiting sustained cognitive decline;

DICOM: Digital Imaging and Communication in Medicine; EDSS: Expanded Disability Status Scale; FLAIR: Fluid-Attenuated
Inversion Recovery; FLAMeS: FLAIR Lesion Analysis in Multiple Sclerosis; MRI: Magnetic Resonance Imaging; MS: Multiple
sclerosis; N-COG: Patients without evidence of sustained cognitive decline; NiFTI: Neuroimaging Informatics Technology Initiative;
OCB: Oligoclonal Bands;  PMS: Progressive Multiple Sclerosis;  pwMS: patients with Multiple Sclerosis;  RMS: Relapsing
Multiple sclerosis;  SCD: Sustained Cognitive Decline;  SDMT: Symbol Digit Modalities Test;  T: Tesla; WMLL: White
Matter Lesion Load
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory
and degenerative disease of the central nervous system
(CNS), characterized by a complex interplay of inflam-
matory demyelination and neuronal damage. The core
MS phenotypes defined by clinical course (Lublin et al.
2014) are the relapsing and the progressive forms. Re-
lapsing MS (RMS) is characterized by relapses defined

as new or increasing neurologic dysfunction, followed
by periods of partial or complete recovery, without ap-
parent progression of the disease during the periods of
remission. On imaging, RMS is typically associated
with new or enlarging T2 lesions and gadolinium-enhan-
cing lesions on magnetic resonance imaging (MRI),
reflecting active inflammation. In contrast, progressive
MS (PMYS) is characterized by progressive worsening of
neurologic function leading to accumulation of
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disability over time independent of relapses (Lor-
scheider et al. 2016). Imaging in PMS typically shows
no new lesion formation, but is characterized by greater
brain and spinal cord atrophy, along with the presence
of slowly expanding lesions, reflecting chronic and on-
going neurodegeneration. Epidemiological data from both
community-based and clinical cohorts suggest that
cognitive impairment affects up to 65% of patients with
MS (pwMS) (R. H. B. Benedict et al. 2020). These
symptoms adversely affect work productivity (Kobelt et
al. 2017) and exert a significant impact on the quality of
life (Bergmann et al. 2023). Cognitive decline can also
be observed in individuals with radiologically isolated
syndrome - a condition defined by incidental brain MRI
findings suggestive of MS - even in the absence of overt
neurological deficits (Amato et al. 2012). As with other
symptoms of MS, cognitive impairment exhibits sub-
stantial interindividual variability and may be influen-
ced by comorbid mood disorders (Margoni et al. 2023)
and medication side effects (Zheng et al. 2021; Atiyeh et
al. 2025). While comprehensive neuropsychological as-
sessment remains the gold standard for cognitive profi-
ling, brief screening tools such as the Brief International
Cognitive Assessment for Multiple Sclerosis (BICAMS)
are increasingly used in clinical practice to monitor
cognitive decline in pwMS (R. H. Benedict et al. 2012).
Among the most commonly reported cognitive symp-
toms, impaired information processing speed stands out
as the most sensitive indicator of of MS-related
cognitive impairment (R. H. B. Benedict et al. 2017).
The Symbol Digit Modalities Test (SDMT), a key com-
ponent of the BICAMS battery, has proven particularly
effective in detecting deficits in this domain and it is
well-suited for use in longitudinal assessments (R. H.
Benedict et al. 2017; R. Benedict et al. 2008). The
performance of this test is consistently associated with
global cognitive decline and disease relapses across
multiple cohorts outperforming other BICAMS compo-
nents such as the California Verbal Learning Test—
Second Edition (CVLT-II) and the Brief Visuospatial
Memory Test-Revised (BVMT-R) (Amato et al. 2010;
Costers et al. 2017; Filser et al. 2018; HamalAdinen et al.
2021; Walker et al. 2016; Farghaly et al. 2021).
Although several hypotheses exist, the mechanisms
underlying cognitive decline in pwMS are still not fully
understood. Artificial intelligence (Al) holds significant
potential to advance the understanding of this pheno-
menon. For example, manual segmentation of MS lesions
is time-consuming and subject to interrater variability,
particularly in patients with a high lesion burden. In
contrast, automated approaches provide a more efficient
and reproducible alternative, enhancing the reliability of
MS imaging studies. Through the analysis of large-scale
clinical and neuroimaging datasets, Al can uncover
latent patterns and identify predictive biomarkers asso-
ciated with cognitive decline and disease progression
(Nabizadeh et al. 2023; Amin et al. 2024).
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SUBJECTS AND METHODS

This retrospective study included a cohort of pwMS
from the MS Database of the University Hospital
HELORA Site Kennedy in Mons (Belgium).

Inclusion Criteria:

= Age >18 years;

= Diagnosis of MS based on the 2017 McDonald
criteria;

= Availability of at least three oral SDMT scores
recorded in the MS Database;

= Availability of follow-up brain MRI data during the
observational period.

Exclusion Criteria:
= Relapse during observational period.

Baseline Functional Assessment:

= Expanded Disability Status Scale (EDSS): ranging
from 1 to 10;

= Symbol Digit Modalities Test (SDMT): oral version,
scored from 0 to 110.

Definition of Sustained Cognitive Decline (SCD):

= A decrease of >4 points or >10% on the SDMT
compared to baseline (Bsteh et al. 2019);

= Confirmation of deterioration at a subsequent
evaluation conducted at least six months later.

Patient Stratification

Eligible patients were stratified into two groups:

= COG group: patients exhibiting SCD confirmed at
follow-up assessment;

= N-COG group: patients without confirmed cognitive
decline at follow-up, including those with stable or
fluctuating cognitive performance over time.

Imaging Analysis

Brain MRI scans acquired during the observational
period were used for this analysis, including those per-
formed up to one year before the initial SDMT assess-
ment and up to one year after the final SDMT evalua-
tion. The automated pipeline used to quantify white
matter lesion load (WMLL) first converts raw, pseudo-
nymized DICOM (Digital Imaging and Communica-
tions in Medicine) format into the 3D NIfTI (Neuro-
imaging Informatics Technology Initiative) format with-
out loss of information. Each image is then pre-proces-
sed using the Advanced Normalization Tools (ANTSs)
suite for spatial normalization to the MNI-152 stan-
dard space and for intensity non-uniformity correction
(N4 bias correction), which locally adjusts image inten-
sity to mitigate inhomogeneities caused by magnetic
field variations or receiver coil sensitivity. Brain extrac-
tion (skull stripping) was conducted using SynthStrip,
a deep learning-based tool optimized for isolating brain
tissue across diverse MRI modalities. White matter lesion
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Step 1: Data Conversion
Raw DICOM scans are
converted to a single 3D
NIfTI volume

v

Step 2: Pre-processing
(ANTSs)
Spatial normalization to
MNI-152 space
and N4 bias field correction

—

Step 3: Brain Extraction
(SynthStrip)
Non-cerebral structures
(skull, etc.) are removed to
isolate the brain

v

Step 4: Lesion
Segmentation (FLAMeS)
A deep leamning model
segments white matter
lesions

Quantitative Metrics
The resulting binary mask
is used to calculate
lesion volume

Figure 1. Flowchart of the automated pipeline used for white matter lesion segmentation

(A) Unsegmented brain image; (B) automated segmentation and labeling performed by the algorithm

Figure 2. Example of segmentation performed by FLAMeS

segmentation was performed using the FLAIR Lesion
Analysis in Multiple Sclerosis (FLAMeS) tool (Deres-
kewicz et al. 2025; Isensee et al. 2021), which is based
on the No New U-Net (nnU-Net) architecture. This deep
learning model is specifically trained on MS brain
imaging data to automatically segment white matter
lesions and generate binary masks used for quantitative
analysis. WMLL was computed by multiplying the
number of voxels within the lesion mask by the volume
of a single voxel, derived from the spatial resolution of
the image. Lesion burden was subsequently expressed as
a percentage of the total brain volume (Figure 1, 2).

Statistical Analysis

Clinical and paraclinical data from the database were
analyzed using inferential statistical methods. The
distribution of continuous variables was assessed using
the Kolmogorov—Smirnov test. Based on the distribu-
tion, between-group comparisons were performed using
either two-sided t-tests for normally distributed data or
Mann—Whitney U tests for non-normally distributed
data. Categorical variables were compared using the ¥?

test or Fisher’s exact test, as appropriate. Correlations
between variables were evaluated using Pearson’s corre-
lation coefficient or Spearman’s rank correlation test. P-
values < 0.05 were considered statistically significant.

RESULTS

Of the 109 eligible patients, 43 met the inclusion
criteria and were included in the study. Among these, 7
patients exhibited SCD over the study period, while the
remaining 36 showed either stable or fluctuating cogni-
tive performance. The results are summarized in Table 1.

Baseline Characteristics

The mean age was 54.0 years (x16.2) in the COG
group and 47.5 years (£11.4) in the N-COG group, with
no statistically significant difference between groups
(p=0.34).

Sex distribution differed significantly: women ac-
counted for 42.9% of the COG group and 86.1% of the
N-COG group (p = 0.02). The median EDSS score was
2.25 in the COG group and 2.00 in the N-COG group.
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Table 1. Baseline characteristics of patients with and without cognitive decline (COG vs. N-COG)

COG (N=7) N-COG (N=36) P-value

Age (years) means + SD 54+£16.19 47.53+11.36 0.34!
Sexe, women (%) 3 (42.86%) 31 (86.11%) 0.02"
Tabaco, n (%) 4/7 (57.14%) 10/32 (31.25%) 0.232
Years between first symptom and diagnosis, median (n) 0.75 (7) 0.13 (35) 0.46°
First Symptoms, n (%) 0.134

Hemi-hypoesthesia 0/6 (0.0%) 6/28 (21.4%)

Hemiparesis 3/6 (50%) 3/28 (10.7%)

Optic neuritis 1/6 (16.67%) 10/28 (35.7%)

Vestibular symptom 0/6 (0.0%) 3/28 (10.7%)

Other 2/6 (33.33%) 6/28 (21.4%)
First Treatment, n (%) 0.28*

Interferon 4/7 (57.14%) 11/35 (31.4%)

Natalizumab 0/7 (0.0%) 5/35 (14.29%)

Glatiramer acetate 2/7 (28.57%) 3/35 (8.57%)

Teriflunomide 0/7 (0.0%) 9/35 (25.71%)

Dimethyl fumarate 0/7 (0.0%) 4/35 (11.43%)

Ocrelizumab 1/7 (14.29%) 2/35 (5.71%)

Cladribine 0/7 (0.0%) 1/35 (2.86%)
Current/Last treatment, n (%) 0.16*

Interferon 0/7 (0.0%) 0/36 (0.0%)

Natalizumab 2/7 (28.57%) 22/36 (61.11%)

Rituximab 1/7 (14.29%) 0/36 (0.0%)

Teriflunomide 1/7 (14.29%) 1/36 (2.78%)

Dimethyl fumarate 0/7 (0.0%) 3/36 (8.33%)

Ocrelizumab 2/7 (28.57%) 5/36 (13.89%)

Cladribine 0/7 (0.0%) 1/36 (2.78%)

Ofatumumab 0/7 (0.0%) 2/36 (5.56%)

Siponimod 0/7 (0.0%) 1/36 (2.78%)

Fingolimod 1/7 (14.29%) 1/36 (2.78%)
Number of prior treatments, median (n) 3(7) 1(35) 0.26°
Presence of spinal cord lesions, yes (%) 5/5 (100%) 16/22 (72.73%) 0.562
Presence of OCB, yes (%) 3/4 (75%) 13/15 (86.67%) 0.532
Number of relapses, n (%) 0.174

0-1 0/6 (0.0%) 10/29 (34.48%)

2-4 5/6 (83.33%) 13/29 (44.83%)

>5 1/6 (16.67%) 6/29 (20.69%)
Number of relapses under last treatment, n (%) 0.082

0 3/6 (50.0%) 30/35 (85.71%)

1 3/6 (50.0%) 5/35 (14.28%)
SDMT, means + standard deviation 45.29 £ 1591 48.72 £16.68 0.62!
EDSS, median (n) 2.25(6) 2 (25) 0.38°

Note: SD: Standard Deviation, OCB: Oligoclonal Bands; SDMT: Symbol Digit Modalities Test; EDSS: Expanded Disability

Status Scale;

The mean SDMT score was 45.3+15.91 in the COG group
and 48.7£16.7 in the N-COG group. Neither SDMT nor
EDSS scores differed significantly between groups
(p=0.62; p = 0.38). Smoking was more prevalent in the
COG group (57.1%) compared to the N-COG group
(31.3%), although the difference did not reach statistical
significance (p=0.23). The median interval from first
symptom to diagnosis was longer in patients with SCD (9
months) than in those without (1.5 months), but this
difference was not statistically significant (p = 0.46). While
the initial clinical presentation varied between groups, it
also did not differ significantly (p = 0.13). The overall dis-
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tribution of first-line therapies did not differ significantly
between groups (p = 0.28). When evaluating the most re-
cent treatment regimen, similar trends were observed,
with the same therapies predominating in both groups. The
COG group had more prior treatments (median = 3 vs. 1),
though not statistically significant (p =0.26). The total
number of relapses did not differ significantly between
groups (p=0.17). However, under disease modifying
treatment, 50% of patients in the COG group experienced
at least one relapse, compared to 14.3% in the N-COG
group. Although not statistically significant, this diffe-
rence approached significance (p = 0.08).
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Table 2. Change in white matter lesion load (WMLL) between first and last follow-up of patients with and without

cognitive decline (COG vs. N-COGQG)

COG (N=5) N-COG (N=21) P-value
WMLL TO0, median % [IQR1-IQR3] 1.2 [0.7-1.8] 0.310.2-0.4] 0.20!
WMLL Tf, median % [IQR1-IQR3] 2.410.7-2.4] 0.310.2-0.5] 0.21'
AWMLL, median % [IQR1-IQR3] 010.0-0.6] 010.0-0.1] 0.49!

Note: WMLL: White Matter Lesion Load; IQR: Interquartile Range; TO: WMLL at baseline; Tf: WMLL at last follow-up;
AWMLL: Change in WMLL between baseline and last follow-up; SDMT: Symbol Digit Modalities Test; EDSS: Expanded

Disability Status Scale;  'Mann-Whitney U test

Table 3. Brain White Matter Lesion Load (WMLL) from
first to last follow-up in the sustained cognitive decline
group (COG)

Time point Lb VpW

Patient 1 TO 0.7 0
Male, 36 years T1 0.7
Patient 2 TO 1.8 +33%
Woman, 73 years Tl 1.9
T2 2.0
T3 2.4
Patient 3 TO 0.1 0
Male, 49 years T1 0.1
T2 0.1
T3 0.1
Patient 4 TO 4.6 -7%
Male, 47 years T1 4.6
T2 4.4
T3 4.2
T4 4.3
Patient 5 TO 1.2 +100%
Male, 68 years T1 1.4
T2 1.6
T3 2.0
T4 2.4

Note: VpW: Variation in percentage of WMLL from first to
last timepoint; Lb: Lesion burden (% of total brain volume)

Imaging

Brain imaging suitable for Al-based processing
during the observational period was available for 5 of 7
patients in the cognitive decline group (COG) and 21 of
36 in the non-cognitive decline group (N-COG).
Exclusions were mainly due to the unavailability of
DICOM files from the acquired imaging, with an
additional two cases in the N-COG group excluded due
to poor image quality. Participants without usable
imaging data were excluded from imaging-related
statistical analyses. The results are summarized in Table
2. No statistically significant differences were observed
in WMLL between patients with SCD and those without
at any timepoint. At baseline (T0), the COG group had a
higher median WMLL percentage compared to the N-
COG group (1.2% vs. 0.3%), but this difference did not
reach significance (p = 0.201). Similarly, at the last
follow-up (Tf), the median WMLL remained higher in
the COG group (2.4% vs. 0.3%, p = 0.211). The median

change in WMLL (AWMLL) over time was minimal in
both groups and not significantly different (p = 0.491).
Individual patient results from the COG group are
summarized in Table 3. In the group of patients with
SCD, white matter lesion load (WMLL) trajectories
varied across individuals. Two patients (Patients 2 and
5) showed a marked increase in WMLL over time, with
relative increases of +33% and +100%, respectively.
Two patients (Patients 1 and 3) exhibited no change in
lesion burden across follow-ups, while one patient
(Patient 4) showed a slight reduction in WMLL (=7%).

DISCUSSION

Despite the limited sample size, this study serves as
a pilot investigation highlighting the potential role of
WMLL in SCD, as well as the utility of Al-based
analysis for assessing white matter lesions in a real-
world cohort of pwMS. Although baseline SDMT and
EDSS scores were similar between groups, patients who
experienced SCD were predominantly male and slightly
older. This observation is consistent with previous
research indicating sex-related differences in MS
progression. Despite the higher overall prevalence of
MS in women, men are more likely to reach disability
milestones earlier, show a greater lesion burden on
MRI, and exhibit more severe cognitive impairment (R.
H. B. Benedict & Zivadinov, 2011; Schoonheim et al.
2012; Rotstein & Montalban, 2019). A trend toward a
longer interval between symptom onset and diagnosis
was observed in patients who later developed SCD,
although it did not reach statistical significance. This
may suggest that delayed intervention could contribute
to the emergence of cognitive symptoms. Disease
control also appeared more challenging in the COG
group, as evidenced by a higher median number of
prior treatments and a greater frequency of relapses
during ongoing therapy. These findings may reflect a
more aggressive disease phenotype. In the COG group,
longitudinal imaging revealed that WMLL remained
stable over time in two of the five cases. Interestingly,
one patient even demonstrated a reduction in lesion
load - a phenomenon well known to MS specialists but
not considered to have prognostic value (Pongratz et
al. 2019). This decrease likely reflects the natural
waning of acute inflammation rather than true
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structural recovery. The two patients who showed a
more pronounced increase were among the oldest in
the group, suggesting that age-related factors - such as
vascular pathology (e.g., leukoaraiosis) - may have
contributed to this progression. Vascular comorbidities
- more common in older individuals and independently
associated with both lesion accumulation and cognitive
decline - may have influenced the cognitive outcomes
observed in this study. Since the segmentation
algorithm cannot reliably differentiate between white
matter lesions caused by MS and those related to
vascular pathology, some of the detected lesion burden
may reflect age-related cerebrovascular changes rather
than MS-specific activity. Additionally, the higher
prevalence of smokers in the COG group, although not
statistically significant, warrants consideration. Prior
research has linked smoking before MS onset with an
increased risk of disease development (Hedstrom et al.
2011; Oturai et al. 2021) and progression (Tanasescu et
al. 2018). Although white matter lesions can disrupt
key tracts connecting cortical and subcortical regions -
thereby impairing functional connectivity essential for
cognitive processing (Guimardes & Sa 2012) —
cognitive decline in MS is likely influenced by
additional factors beyond lesion load (Wybrecht et al.
2017). Current literature increasingly points toward the
role of cortical lesions, rather than purely white matter
involvement, in the development of cognitive
impairment in MS. Advanced imaging techniques have
demonstrated that cortical demyelination, grey matter
atrophy, and whole-brain atrophy are more strongly
associated with cognitive decline than conventional
measures of white matter lesion volume (Granberg et
al. 2017; Calabrese et al. 2012; Harrison et al. 2015;
Azevedo et al. 2018). Just as motor and sensory
symptoms can progress in the absence of new lesions,
cognitive decline may reflect underlying neurodege-
nerative processes that are not detectable with standard
lesion-focused imaging techniques. Disability pro-
gression independent of relapse activity in MS remains
incompletely understood, with chronic active lesions
among the few white matter imaging biomarkers
currently recognized (Absinta et al. 2020; Husseini et
al. 2024). These lesions may expand very slowly, often
requiring years to show a measurable increase in
volume, and may therefore go wundetected by
conventional WMLL quantification techniques, espe-
cially when imaging is performed over a relatively
short time lapse. This highlights the need for more
sensitive imaging techniques, advanced biomarkers,
and the potential integration of specialized tools. Al-
driven algorithms enable rapid, reproducible, and
precise detection of white matter alterations that often
escape conventional visual assessment. By automating
complex tasks, these tools greatly reduce the burden of
manual processing while improving sensitivity to early
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or specific pathological changes. Lesion segmentation
is one of the most common and clinically relevant
tasks in the interpretation of brain MRI scans in
pwMS. Deep learning models, particularly those uti-
lizing convolutional neural networks, have emerged as
the leading approach for lesion segmentation, con-
sistently surpassing tradetional machine learning
methods in accuracy (La Rosa et al. 2020; Wiltgen et
al. 2024). These models typically require both T2-
weighted FLAIR and T1-weighted MRI sequences as
input (Brugnara et al. 2020); however, the latter is not
consistently acquired in routine clinical practice
(Wattjes et al. 2021), thus limiting the real-world
applicability of such approaches. FLAMeS, the algo-
rithm employed in this study, is a deep learning-based
segmentation tool trained on a heterogeneous dataset.
Notably, it relies solely on the FLAIR sequence for
lesion segmentation and was developed using acqui-
sitions from both 1.5 T and 3T MRI scanners, en-
hancing its suitability for real-world clinical appli-
cations. Although not yet fully optimized for longi-
tudinal analysis, FLAMeS provides robust and con-
sistent automated lesion segmentation, representing a
significant improvement over traditional subjective
qualitative assessments.

Study Limitations and Future perspectives

The small sample size limits statistical power and
generalizability, while the retrospective design pre-
cludes causal inference. Cognitive decline was assessed
using a single tool, which may not fully capture its
complexity in MS. Additionally, the MRI segmentation
did not specifically focus on brain regions typically
implicated in cognitive dysfunction, including gray
matter structures and critical white matter tracts, po-
tentially overlooking important anatomical correlates.
Future studies with larger cohorts are needed to refine
biomarkers of SCD, incorporating detailed lesion cha-
racterization, regional localization (e.g., intracortical
and specific white matter tract involvement), and
measures of both focal and global brain atrophy.

CONCLUSION

Despite the limited sample size, this study identified
few factors potentially associated with cognitive decline
in MS. Male sex was associated with SCD, supporting
previous evidence of potential sex-related differences in
the neurodegenerative processes underlying MS pro-
gression. While WMLL alone may be insufficient as a
standalone biomarker for cognitive dysfunction, Al-
driven neuroimaging tools offers promising oppor-
tunities to quantify pathological changes and deepen
our understanding of the mechanisms underlying
clinical symptoms in MS.
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